An Efficient Shift-Reduce Decoding Algorithm for Phrased-Based Machine Translation
نویسندگان
چکیده
In statistical machine translation, decoding without any reordering constraint is an NP-hard problem. Inversion Transduction Grammars (ITGs) exploit linguistic structure and can well balance the needed flexibility against complexity constraints. Currently, translation models with ITG constraints usually employs the cube-time CYK algorithm. In this paper, we present a shift-reduce decoding algorithm that can generate ITG-legal translation from left to right in linear time. This algorithm runs in a reduce-eager style and is suited to phrase-based models. Using the state-ofthe-art decoder Moses as the baseline, experiment results show that the shift-reduce algorithm can significantly improve both the accuracy and the speed on different test sets.
منابع مشابه
A Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملA Shift-Reduce Parsing Algorithm for Phrase-based String-to-Dependency Translation
We introduce a shift-reduce parsing algorithm for phrase-based string-todependency translation. As the algorithm generates dependency trees for partial translations left-to-right in decoding, it allows for efficient integration of both n-gram and dependency language models. To resolve conflicts in shift-reduce parsing, we propose a maximum entropy model trained on the derivation graph of traini...
متن کاملHierarchical phrase-based translation with weighted finite state transducers
This dissertation is focused in the Statistical Machine Translation field (SMT), particularly in hierarchical phrase-based translation frameworks. We first study and redesign hierarchical models using several filtering techniques. Hierarchical search spaces are based on automatically extracted translation rules. As originally defined they are too big to handle directly without filtering. In thi...
متن کاملA Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times
We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...
متن کاملA Chart Generator for Shake and Bake Machine Translation
A generation algorithm based on an active chart parsing algorithm is introduced which can be used in conjunction with a Shake and Bake machine translation system. A concise Prolog implementation of the algorithm is provided, and some performance comparisons with a shift-reduce based algorithm are given which show the chart generator is much more efficient for generating all possible sentences f...
متن کامل